Some RGB fractal doodles

Click on the animation to view full size gif.

This is the code I used to generate the animation:

//
// fraktalismus modulo - written by Ted Burke 15-1-2019
// Compiled and tested on Xubuntu Linux 18.10
//
// To compile:
//     gcc -o fraktalismus fraktalismus.c -lm
//
// To run:
//     ./fraktalismus
//
// To create mp4 video from frames using ffmpeg:
//     ffmpeg -f image2 -framerate 15 -i "%04d.png" output.gif
//

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <complex.h>

int main()
{
    // Declare variables
    unsigned char *p;             // buffer of rgb pixels for each frame 
    complex double *q;            // stores a frame of complex pixel values
    double qmagn, qarg;           // magnitude and angle of 
    unsigned char r, g, b;        // colour components of each pixel
    int w=4*1366, h=4*768;        // image width and height
    int n, x, y, t, T;            // t is the frame number
    int xoffset, yoffset;         // shifts centre point of image in complex plane
    complex double z, c, coffset; // z is the iterated complex value
    double zmax;                  // z values wrap around at this magnitude
    double px;                    // width/height of each pixel in complex plane
    FILE *fimage;                 // file pointer for writing pnm files
    char pnm_filename[256];       // stores PNM image filename for each frame
    char png_filename[256];       // stores PNG image filename for each frame
    char command[1024];           // buffer for imagemagick shell command
    
    // Allocate memory for pixels
    p = malloc(w*h*3);
    q = malloc(w*h*sizeof(complex double));
    
    // Generate frames of the animation one by one
    T = 31;
    for (t=0 ; t<T ; ++t)
    {
        // Generate pixel values
        c = -0.6 -0.725*I + 0.025*cexp(I*2.0*t*M_PI/T);
        xoffset = -600*4;
        yoffset = -500*4;
        px = 0.0007/4.0;
        zmax = 1000.0;
        for (y=0 ; y<h ; ++y) for (x=0 ; x<w ; ++x)
        {
            // Iterate complex function
            z = px * ((x-w/2.0+xoffset) + I*(y-h/2.0+yoffset));
            coffset = 0.025 * cexp(I*atan2(y,x));
            for (n=0 ; n<10 ; ++n)
            {
                z = z*z + c + coffset;
                if (cabs(z) > zmax)
                {
                    z = fmod(cabs(z), zmax) * cexp(I*carg(z));
                }
            }
            
            // Find end point of this point's N-step orbit
            q[y*w + x] = z;
        }
        
        for (y=0 ; y<h ; ++y) for (x=0 ; x<w ; ++x)
        {
            // Set RGB components of current pixel
            qmagn = log(cabs(q[y*w + x]));
            qarg = carg(q[y*w + x]);
            r = 255.0 * qmagn * 0.5 * (1.0 + cos(qarg + 0*2.0*M_PI/3.0));
            g = 255.0 * qmagn * 0.5 * (1.0 + cos(qarg + 1*2.0*M_PI/3.0));
            b = 255.0 * qmagn * 0.5 * (1.0 + cos(qarg + 2*2.0*M_PI/3.0));
            r = 255 - r; g = 255 - g; b = 255 - b;
            p[3*(y*w + x) + 0] = r;
            p[3*(y*w + x) + 1] = g;
            p[3*(y*w + x) + 2] = b;
        }
        
        // Write image to PNM file
        sprintf(pnm_filename, "%04d.pnm", t);
        sprintf(png_filename, "%04d.png", t);
        fprintf(stderr, "Writing %s\n", pnm_filename);
        fimage = fopen(pnm_filename, "w");
        fprintf(fimage, "P6\n%d %d\n255\n", w, h);
        fwrite(p, 3, w*h, fimage);
        fclose(fimage);
        
        // Convert image to PNG format and then delete PNM file
        sprintf(command, "convert %s -resize 25%% %s", pnm_filename, png_filename);
        fprintf(stderr, "Executing: %s\n", command);
        system(command);
        sprintf(command, "rm %s", pnm_filename);
        fprintf(stderr, "Executing: %s\n", command);
        system(command);
    }
    
    // Free dynamically allocated memory
    free(p);
    free(q);
}

The version below is obtained by modifying the iterating function on line 59 of the program, as follows:

z = (z*z + c + coffset)/(z*z - c + coffset);

Click on the animation to view full size version.

Advertisement
This entry was posted in Uncategorized. Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s